- •theorema
- , -to (G). A spectacle; a theory
Dictionary of word roots and combining forms . Donald J. Borror. 2013.
Dictionary of word roots and combining forms . Donald J. Borror. 2013.
Theorēma — (gr.), Lehrsatz, s.d. 3). T. binomiale, s. Binomischer Lehrsatz. T. Pythagŏrae, s. Pythagoreischer Lehrsatz etc. Daher theorematisch, in Lehrsätzen bestehend … Pierer's Universal-Lexikon
Theorema egregrium — Theorema egregium Le Theorema Egregium (« théorème remarquable » en latin) est un important théorème énoncé par Carl Friedrich Gauss et portant sur la courbure des surfaces. Il dit que celle ci peut être entièrement déterminée en… … Wikipédia en Français
Theorema egregium — [lateinisch egregius »hervorragend«], ein von C. F. Gauss 1827 angegebener Satz der Flächentheorie, nach dem die gaußsche Krümmung invariant ist unter isometrischen Abbildungen … Universal-Lexikon
Theorema egregium — Das Theorema egregium ist ein Satz aus der Differentialgeometrie, einem Teilgebiet der Mathematik. Er wurde von Carl Friedrich Gauß gefunden und in knapper Formulierung lautet er: Die Gaußsche Krümmung einer Fläche ist eine Größe der inneren… … Deutsch Wikipedia
Theorema Egregium — Gauss s Theorema Egregium (Latin: Remarkable Theorem ) is a foundational result in differential geometry proved by Carl Friedrich Gauss that concerns the curvature of surfaces. Informally, the theorem says that the Gaussian curvature of a surface … Wikipedia
Theorema egregium — Una consecuencia del theorema egregium es que no puede existir un mapa a escala de la Tierra sin distorsión, al tener la superficie de la tierra y el plano diferentes curvaturas gaussianas. La proyección de Mercator, mostrada en la imagen,… … Wikipedia Español
Theorema elegantissimum — Der Satz von Gauß Bonnet (nach Carl Friedrich Gauß und Pierre Ossian Bonnet) ist eine wichtige Aussage über Flächen, die ihre Geometrie mit ihrer Topologie verbindet, indem eine Beziehung zwischen Krümmung und Euler Charakteristik hergestellt… … Deutsch Wikipedia
Theorema egregium — En mathématiques, et plus précisément en géométrie, le theorema egregium (« théorème remarquable » en latin) est un important théorème énoncé par Carl Friedrich Gauss et portant sur la courbure des surfaces. Il dit que celle ci peut… … Wikipédia en Français
Beau théorème de Gauss — Theorema egregium Le Theorema Egregium (« théorème remarquable » en latin) est un important théorème énoncé par Carl Friedrich Gauss et portant sur la courbure des surfaces. Il dit que celle ci peut être entièrement déterminée en… … Wikipédia en Français
ГАУССА ТЕОРЕМА — (theorema egregium): гауссова кривизна (произведение главных кривизн) регулярной поверхности в евклидовом пространстве не меняется при изгибаниях поверхности. (Здесь регулярность означает гладкое погружение.) Г. т. следует из того, что гауссова… … Математическая энциклопедия